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The problem of subsonic interfacial (Stoneley) wave propagation in anisotropic multiferroic
bimaterials with a viscous interface is treated. A concise analytical method is constructed
for deduction of possible subsonic interfacial wave with varying viscosity of the interface.
A numerical scheme and several calculations are given based on the method, which demon-
strate interesting results. For an interface constructed by a piezoelectric half-space and a
piezomagnetic half-space, when assumed to be non-viscous, calculation shows that it does
not permit any subsonic interfacial wave. Yet when the same interface is assumed to be vis-
cous, at least one possible subsonic interfacial wave speed appears which varies with the
viscosity of the interface. By introducing the relation between viscosity of certain adhesives
and temperature, the possibility of control of interfacial wave speeds through accommodat-
ing the working temperature is put forward.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded multiferroic composites, commonly fabricated as laminated structure, promise extensive application
prospect. By coupling the piezoelectric and magnetostrictive properties of the two phases, multiferroic composites possess
magnetoelectric (ME) effect [1]. Although the ME effect exists statically, its practical application generally appears in dy-
namic conditions. In addition, for all artificial composites, dynamical analysis (e.g. nondestructive detection) helps us learn
more about the material’s property. On the other hand, the ME effect for multiferroic composites is realized mainly through
transfer of mechanical stress through the interface. The condition of the interface is thus crucial for the ME effect.

Yet, wave propagation in multiferroic composites is essentially a very complicated problem. On one hand, most multif-
erroic composites are made of crystals, which falls into transversely isotropic materials, or generally speaking, anisotropic
materials. Eringen [2] provides field theories for the study of anisotropic microcontinuum bodies. On the other hand, the ef-
fects of piezoelectricity and magnetostrictivity have specific impact on the properties of acoustic wave propagation [3–5]. On
this basis, our focus switches to the dynamic behavior on the interface. In a series of two papers, Barnett and Lothe [6,7] con-
structed the ‘impedance method’ for surface (Rayleigh) wave and interface (Stoneley) wave propagation in anisotropic mate-
rial. The mathematical method used in their work derives from Stroh [8] and a comprehensive review given by Chadwick and
Smith [9].

In theoretical studies, idealized assumptions are made to simplify the physical problem. In the Stoneley wave problem,
interfaces are often assumed to be perfectly bounded [10]. Yet, this is far from the truth. Let alone possible defects, artificial
laminated composites are bonded by adhesives, which should be considered viscous at room temperature (300 K) [11]. The
. All rights reserved.
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viscosity of the interface changes the boundary condition of shear stress on it [12], which as a result changes the physical
problem and provides a possibility for appearance of new phenomenon. Wang et al. [13] applied the viscous interface con-
dition to the study of two-dimensional Green’s function for multiferroic composites and gave some interesting results. In this
paper the subsonic interfacial (Stoneley) wave in anisotropic multiferroic bimaterials with a viscous interface is treated.

The paper is arranged as follow: in Section 2, the linearized basic dynamic equations for multiferroic single crystals are
given. In Section 3, general solution of the interfacial (Stoneley) waves in anisotropic multiferroic bimaterials with a viscous
interface is deduced. In Section 4, a computational scheme using the solution is provided, together with several important
numerical results and the physical interpretation of these results. A brief conclusion is drawn in Section 5.

2. Basic formulations

For linearized anisotropic multiferroic single crystal, the equation of equilibrium for the coupled magneto-electro-elastic
field can be expressed as:
CiJKluK;li þ fJ ¼ q€uj; ð2:1Þ
where
CiJKl;¼

Cijkl; J;K ¼ 1;2;3;
elij; J ¼ 1;2;3; K ¼ 4;
eikl; J ¼ 4; K ¼ 1;2;3;
qlij; J ¼ 1;2;3; K ¼ 5;
qikl; J ¼ 5; K ¼ 1;2;3;
�kil; J ¼ 4; K ¼ 5 or J ¼ 5; K ¼ 4;
�eil; J;K ¼ 4;
�lil; J;K ¼ 5

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2:2Þ
and
uJ ¼
uj; J ¼ 1;2;3;
/; J ¼ 4;
u; J ¼ 5;

8><
>: f J ¼

fj; J ¼ 1;2;3;
�fe; J ¼ 4;
�fm; J ¼ 5:

8><
>: ð2:3Þ
Cijkl, eij and lij are the elastic, dielectric, and magnetic permeability tensors, respectively; eijk, qijk and kij are the piezoelectric,
piezomagnetic, and magnetoelectric coefficients, respectively. ui, / and u are the elastic displacement, electric potential, and
magnetic potential, respectively; fi, fe and fm are the body force, electric charge, and electric current (or called magnetic
charge as compared to the electric charge), respectively. üj indicates second order derivative of uj with respect to time.
uK,i represents derivative of uK with respect to the component of position xi. In Eq. (2.1) and the following deduction, repeated
indices mean summation, capital subscripts (e.g. J, K in CiJKl) vary from 1 to 5, and lowercase subscripts (e.g. i, l in CiJKl) vary
from 1 to 3. Note that in Eq. (2.1), capital subscripts and lowercase subscripts appear in one equation, this means that when J,
K = 4 or 5 the terms with lowercase subscripts (e.g. qüj on the right side of the equation) vanish. When the extended body
force fJ is zero, Eq. (2.1) is reduced to
CiJKluK;li ¼ q€uj: ð2:4Þ
The extended elastic coefficient tensor CiJKl in Eq. (2.2) relates the extended strains to the extended stresses by the consti-
tutive relation
riJ ¼ CiJKlcKl; ð2:5Þ
where the extended stresses and strains are defined by
riJ ¼
rij; J ¼ 1;2;3;
Di; J ¼ 4;
Bi; J ¼ 5;

8><
>: cIj ¼

cij; I ¼ 1;2;3;
�Ej; I ¼ 4;
�Hj; I ¼ 5:

8><
>: ð2:6Þ
In Eq. (2.6), rij, Di and Bi are the stress, electric displacement, and magnetic induction (i.e. magnetic flux), respectively; cij, Ei

and Hi are the strain, electric field and magnetic field, respectively. It is observed that various uncoupled cases (i.e. purely
elasticity, piezoelectricity, and piezomagneticity can be reduced from Eqs. (2.1)–(2.4) and (2.5) by setting the appropriate
coefficients to zero. It is further noticed that the following symmetry relations hold:
Cijkl ¼ Cjikl ¼ Cklij;

ekji ¼ ekij; qkji ¼ qkij;

eij ¼ eji; kij ¼ kji; lij ¼ lji:

ð2:7Þ
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Finally, the extended strains and displacements are related by the geometric equation
cij ¼
1
2
ðui;j þ uj;iÞ;

Ei ¼ �/;i; Hi ¼ �u;i:
ð2:8Þ
3. General solution of the interfacial (Stoneley) waves

The physical problem considered in this paper is depicted in Fig. 1, where two multiferroic half-spaces are boned to-
gether, each with arbitrary anisotropy. The Cartesian coordinates (e1, e2, e3) are chosen so that e2 points towards the upper
half-spaces and e1 points towards the direction of propagation of the Stoneley waves. e3 = e1 � e2 is not denoted in Fig. 1.
x = [x1 x2 x3]T is the position vector described in the frame (e1, e2, e3). Quantities associated with the upper and lower
half-spaces will be followed by subscripts (1) and (2), respectively, illustrated in Fig. 1.

Consider propagation of a harmonic interfacial wave, the corresponding boundary conditions on the interface x2 = 0 are [12]
rð1Þ2J ¼ rð2Þ2J ; ðJ ¼ 1;2;3;4;5Þ; ð3:1aÞ

uð1Þ2 ¼ uð2Þ2 ; uð1Þ4 ¼ uð2Þ4 ; uð1Þ5 ¼ uð2Þ5 ; rð2Þ21 ¼ g1 _uð1Þ1 � _uð2Þ1

� �
; rð2Þ23 ¼ g3 _uð1Þ3 � _uð2Þ3

� �
; ð3:1bÞ
where g1 and g3 are the viscous coefficients of the interface in the e1 and e3 directions. Eq. (3.1a) guarantees the continuity of
stress across the interface. Eq. (3.1b) depicts the conditions for displacements on a viscous interface, where we can see that
vertical component u2, the electric potential u4 and the magnetic potential u5 are still required to be continuous across the
interface; yet the displacement components on the interface, u1 and u3, are allowed to take a jump across the interface, the
extent of which controlled by the sheer stress on the interface and the viscous coefficients.

The general solution for the Stoneley wave problem is constructed by combining two Stroh waves with the same phase
velocity v on the interface, which gives
uð1ÞJ ðx; tÞ ¼
X5

a¼1

Að1ÞJa Eð1Þa exp ikðx1 þ pð1Þa x2 � vtÞ
� �

; x2 P 0; ð3:2aÞ

uð2ÞJ ðx; tÞ ¼
X5

a¼1

A�ð2ÞJa E�ð2Þa exp ikðx1 þ p�ð2Þa x2 � vtÞ
� �

; x2 6 0; ð3:2bÞ
where Að1ÞJa ;A
�ð2Þ
Ja and pð1Þa ; p�ð2Þa are obtained by using the Stroh formalism, whose detailed expressions and physical meaning

are given in Appendix A. In Eqs. (3.2a) and (3.2b), the wave number k is real and positive, * denotes complex conjugation, EK

are constants determined by the boundary conditions. Substitution of Eqs. (3.2a) and (3.2b), (2.5) and (2.8) into Eq. (3.1a)
gives
X5

a¼1

Lð1ÞJa Eð1Þa ¼ �
X5

a¼1

L�ð2ÞJa E�ð2Þa ; ð3:3Þ
where
LJa ¼ �½C2JK1 þ paC2JK2�AKa: ð3:4Þ
Eq. (3.4) gives a relation that depends on pa. Barnett and Lothe [6] have proved in their work that
La ¼ �iZAa; ð3:5Þ
where Z is called the surface impedance tensor, whose details are given in Appendix B. According to Eq. (3.5), Eq. (3.3) can be
transformed as
2e

1e
O

(1) (1),iJKlC ρ

(2) (2),iJKlC ρ

Fig. 1. Geometry associated with the Stoneley wave problem.
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Zð1ÞJK Uð1ÞK ¼ �Z�ð2ÞJK U�ð2ÞK ; ð3:6Þ
where
Uð1ÞK ¼
X5

a¼1

Að1ÞKaEð1Þa ; U�ð2ÞK ¼
X5

a¼1

A�ð2ÞKa E�ð2Þa : ð3:7Þ
From (3.1b), we have
Uð1Þ2 ¼ U�ð2Þ2 ; Uð1Þ4 ¼ U�ð2Þ4 ; Uð1Þ5 ¼ U�ð2Þ5 ; g1v Uð1Þ1 � U�ð2Þ1

� �
¼ Zð1Þ1K Uð1ÞK ; g1v Uð1Þ3 � U�ð2Þ3

� �
¼ Zð1Þ3K Uð1ÞK : ð3:8Þ
Eq. (3.8) can be recasted into a matrix form as
U�ð2Þ ¼ ðI� DÞUð1Þ; ð3:9Þ
where
U ¼ U1 U2 U3 U4 U5½ �T ; ð3:10Þ

D ¼ 1
g1v

Zð1Þ11 Zð1Þ12 Zð1Þ13 Zð1Þ14 Zð1Þ15

0 0 0 0 0
g1
g3

Zð1Þ31
g1
g3

Zð1Þ32
g1
g3

Zð1Þ33
g1
g3

Zð1Þ34
g1
g3

Zð1Þ35

0 0 0 0 0
0 0 0 0 0

2
6666664

3
7777775
: ð3:11Þ
I is the fifth-order unit matrix. Substitution of Eq. (3.9) into Eq. (3.6) gives
WUð1Þ ¼ 0; ð3:12Þ
where
W ¼ Zð1Þ þ Z�ð2ÞðI� DÞ: ð3:13Þ
Here we name W as the viscous impedance tensor for interfaces. As viscosity does not exist for a free surface, W can be di-
rectly called viscous impedance tensor. From Eq. (3.12), it is obvious that a subsonic wave solution exists if and only if there
exists a phase velocity vs, such that Eq. (3.12) is satisfied. Yet, From the expression given by Eq. (3.13), it is noticed that for
most cases, W is not hermitian, which gives
W ¼ WR þ iWI; ð3:14Þ
where both WR and WI are both real matrices. Generally speaking, for Eq. (3.12) to have solution, U(1) = U(1)R + iU(1)I must be a
complex vector, which requires that EK and E�K given by Eqs. (3.2a) and (3.2b) be complex numbers. For a complex matrix W,
Eq. (3.12) can be transformed as
ðWR þ iWIÞðUð1ÞR þ iUð1ÞIÞ ¼ 0; ð3:15Þ
which in term gives
WRUð1ÞR �WIUð1ÞI ¼ 0;
WRUð1ÞI þWIUð1ÞR ¼ 0:

(
ð3:16Þ
If detWI = detWR = 0 at one phase velocity (v = vs), then vs enables a interfacial wave. Otherwise, we have from Eq. (3.16)
det½WIðWRÞ�1
WI þWR� ¼ 0; ðv ¼ vsÞ; ð3:17Þ
where U(1)I belongs to the null-space of [WI(WR)�1WI + WR]jvs and U(1)R = (WR)�1WIU(1)I. Eq. (3.17) is deduced for general
anisotropic materials. Yet, we know that presently most piezoelectric or piezomagnetic materials are transversely isotropic.
For this special kind of material, we find in our calculation that although W in Eq. (3.14) is a complex matrix and also not
hermitian, detW is always real. We present here a brief proof of this conclusion. For a bimaterial made up of a magnetostric-
tive upper half-space and a piezoelectric lower half-space (both materials are transversely isotropic), Z(1) and Z*(2) in Eq.
(3.13) are of the structure
Zð1Þ ¼

R11 I12 I13 0 I15

�I12 R22 R23 0 R25

�I13 R23 R33 0 R35

0 0 0 R44 0
�I15 R25 R35 0 R55

2
6666664

3
7777775

; Z�ð2Þ ¼

R011 I012 I013 I014 0
�I012 R022 R023 R024 0
�I013 R023 R033 R034 0
�I014 R024 R034 R044 0

0 0 0 0 R055

2
6666664

3
7777775
; ð3:18Þ
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where Rij;R
0
ij ði; j ¼ 1;2;3;4;5Þ denotes a real number and Iij; I

0
ij ði; j ¼ 1;2;3;4;5Þ denotes a pure imaginary number. The

structures of the two matrices in Eq. (3.18) are obtained by specifying the expressions of Eqs. (B.1)–(B.4) and (B.5) in Appen-
dix B. Yet, the detailed expressions of the numbers presented in the matrices in Eq. (3.18) are too complicated to be deduced
here. Eq. (3.13) can be recated into
W ¼ ðZð1Þ þ Z�ð2ÞÞ � Z�ð2ÞD; ð3:19Þ
where the first terms in the bracket is a hermitian and the second term is given by
Z�ð2ÞD ¼

R11R011 � I13I013 R011I12 þ R23I013 R011I13 þ R33I013 0 R011I15 þ R35I013

�R11I012 � R023I13 �I12I012 þ R23R023 �I13I012 þ R33R023 0 �I15I012 þ R35R023

�R11I013 � R033I13 �I12I013 þ R23R033 �I13I013 þ R33R033 0 �I15I013 þ R35R033

�R11I014 � R034I13 �I12I014 þ R23R034 �I13I014 þ R33R034 0 �I15I014 þ R35R034

0 0 0 0 0

2
6666664

3
7777775
: ð3:20Þ
The structure of the 5 * 5 matrix W turns out to be
W ¼

R0011 I0012 I0013 I0014 I0015

�I0021 R0022 R0023 R0024 R0025

�I0031 R0032 R0033 R0034 R35

�I0041 R0042 R0043 R0044 R0045

�I0051 R0052 R0053 R0054 R0055

2
6666664

3
7777775

ð3:21Þ
from which it is easy to prove that detW is real. In this case, we can use
det W ¼ 0; ðv ¼ vsÞ ð3:22Þ
as the determining equation for vs.
Eqs. (3.14)–(3.21) and (3.22) provide equations on the possible phase velocity of the interfacial (Stoneley) wave as a func-

tion of the viscous coefficients g1 and g3. Moreover, in physical chemistry, we know that the viscous coefficients of the adhe-
sives which bonds the two half-space together at the interface are intimately affected by several physical conditions of the
surroundings, especially temperature. On the contrary, if the relation of viscosity with temperature g = g(T) is known, we are
able to deduce the variation of phase velocity of the interfacial (Stoneley) wave caused by changes in temperature.

4. Computation

4.1. A computational scheme

The method of viscous impedance tensor provides a concise yet rigorous way for searching Stoneley wave modes in func-
tionally graded multiferroic bimaterials with a viscous interface. Moreover, it avails discussion on the effects of different
physical conditions (e..g. viscosity, temperature) on the speed of propagation. A simple scheme is given for this purpose.

1. For the two given half-spaces and given direction of propagation, calculate the ‘limiting speed’ mentioned in Appendix B.
Assume here that the limiting speeds for the upper and lower half-space are v̂1 and v̂2, respectively. One may follow the
procedure introduced in Barnett and Lothe [6] or Chadwick and Smith [9].

2. Find the smaller of the two limiting speed, here we assume that v̂1 < v̂2. For given values of g1, g3, in the range of
0 < v 6 v̂1, calculate the permitted Stoneley wave speed vs which makes detW = 0. If in the range of 0 < v 6 v̂1, the value
detW does not change sign, then there is no Stoneley wave for the given g1, g3.

3. Change g1, g3 and repeat process 1, 2; find the relation between vs and g1, g3.
4.2. Numerical results

We consider the most commonly used functionally graded multiferroic bimaterials made up of piezoelectric BaTiO3 and
magnetostrictive CoFe2O4. The material coefficients are given in Table 1 [14]. As illustrated in Fig. 1, the materials are polar-
ized in the axis e2.

The interface of this bimaterial made up of BaTiO3 and CoFe2O4, if without viscosity, does not permit a subsonic Stoneley
wave. In the first numerical example, we calculate the effect of viscosity on the speed of Stoneley wave in a rather wide scale.
The results are given in Fig. 2.

In reality, the viscosity of any adhesive becomes extremely sensitive to temperature when it cools down. Therefore, in the
second calculation, we give another computation on the effect of viscosity on the speed of Stoneley wave in a rather small
scale (10–100 P). The results are given in Fig. 3. In the third calculation, influence of viscosity on the wave speed of an inter-
face that initially permits a Stoneley wave is treated. In this numerical example, we consider an infinite BaTiO3 matrix cutted



Table 1
Material coefficients(Cij in 109 N/m2, eij in C/m2, qijin N/Am, eij in 10�9 C2/(N m2), and lij in 10�6 N s2/C2).

C11 C33 C13 C44 C66

BaTiO3 166 162 78 43 44.5
CoFe2O4 286 269.5 170.5 45.3 56.5

e31 e33 e15 q31 q33 q15

BaTiO3 �4.4 18.6 11.6 0 0 0
CoFe2O4 0 0 0 580.3 699.7 550

e11 e33 l11 l33

BaTiO3 11.2 12.6 5 10
CoFe2O4 0.08 0.093 �590 157
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Fig. 2. Variation of the phase velocity of interfacial (Stoneley) wave propagating in multiferroic bimaterials made of BaTiO3 and CoFe2O4 with viscosity. Two
possible speeds are shown from the picture. The one depicted by broken line appear later (at about 8 � 107 P). Values in y-axis should be multiplied by
2458, which is the ‘limiting speed’ mentioned in Appendix B.
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Fig. 3. Variation of the phase velocity of interfacial (Stoneley) wave propagating in multiferroic bimaterials made of BaTiO3 and CoFe2O4 with viscosity. As
the values of viscosity is rather small compared with the ones in Fig. 2, only one possible phase velocity exist. Values in y-axis should be added by
2416.9744.
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into two half-spaces at the plane x2 = 0, the material is polarized in axis x2 as shown in Fig. 1. Fig. 4 shows the calculation
results.
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Fig. 4. Variation of the phase velocity of interfacial (Stoneley) wave propagating in an infinite BaTiO3 matrix cutted into two half-spaces at the plane x2 = 0
with viscosity. Two possible speeds exist at the beginning and then another one appear at certain point. Yet, from our results it is observed that the value of
the new possible speed is slightly larger then the ‘limiting speed’ and finally equals to it when viscosity reaches infinity.
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Fig. 5. Variation of liquid epoxy resin viscosity with temperature: (a) liquid diglycidyl ether plus glycidyl ester of a tertiary carboxylic acid as a reactive
diluent; (b) liquid diglycidyl ether plus dibutyl phthalate as a plasticizer; and (c) unmodified diglycidyl either; semisolid diglycidyl either.
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Fig. 5 shows a rapid decrease of the viscosity of epoxy resin system with temperature [11]. Then, by using this relation
between temperature and viscosity of certain adhesives, the variation of phase speed as a function of the temperature is pic-
tured. The results are given in Fig. 6. Our calculation procedure is applicable to interfaces constructed by any ‘‘reduced mate-
rial”, including piezoelectric/piezomagnetic materials, elastic materials (with triclinic, monoclinic, rhombic, trigonal,
tetragonal, transversely isotropic, cubic and isotropic symmetry).

4.3. Discussion

From Fig. 2, we see that when viscosity is considered, subsonic Stoneley waves emerges for interfaces that originally for-
bid their propagation. In Fig. 2, two possible Stoneley waves are shown with different phase speed. Note that the one de-
picted with real line appears in the very beginning (at the first point calculated, the viscosity is assumed to be 10 P),
while the other one depicted with broken line appears much later (around 8 � 107 P). Both possible wave speeds decrease
with increasing viscosity and finally vanish, so when viscosity reaches infinity (i.e. non-viscosity), no available wave speed
exists.

In Fig. 4, we see that one more available wave speed (dashdotted) appear with increasing viscosity. As the viscosity ap-
proaches infinity, the new wave speed is the only one that remains, and equals to the wave speed obtained for non-viscous
interface Stoneley wave. Yet, from our results it is observed that the value of the new possible speed is slightly larger than
the ‘limiting speed’, which implicates that this velocity transform from supersonic to subsonic speed.



0 10 20 30 40 50 60 70

-6

-5

-4

-3

-2

-1

0

1

x 10-5

a

b
c

d

+2416.9744 

Temperature (oC) 

sv
(m

/s
) 

Fig. 6. Variation of the phase velocity of interfacial (Stoneley) wave propagating in multiferroic bimaterials made of BaTiO3 and CoFe2O4 with temperature.
The interface is adhered by different liquid epoxy resins as shown in Fig. 5. Values in y-axis should be added by 2416.9744.
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It should be noted that the viscosity of epoxy resin shown in Fig. 5 are tested in uncured state, for cured adhesives the
viscosity might present different properties. Yet, this is not a problem covered in this paper.

5. Conclusion

We have introduced the notion of viscous impedance tensor W, which permits settling the question of existence of sub-
sonic Stoneley wave in anisotropic multiferroic bimaterials with a viscous interface. Although the complexity of the tensor W

prevent further discussion on the problem of uniqueness, it is clear from the numerical results that for nonsingular viscosity,
at least one subsonic wave speed is permitted, and in our results, at most there are three possible subsonic wave speeds. An
important result is discovered in the first numerical example that for a non-viscous interface that does not permit a Stoneley
wave, the appearance of viscosity of the interface enables at least one possible Stoneley wave, and the wave speed varies as a
function of viscosity of the interface. In the last computation, we show a picture demonstrating the effect of change in work-
ing temperature on the Stoneley wave speed propagating in a viscous interface.
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Appendix A. Stroh formalism

Consider an extended displacement field described by
uJ ¼ AJf ðx1 þ px2 � vtÞ; ðA:1Þ
where p is an unknown to be decided. (For a more generalized description, please refer to [8,15].) Substitution of Eq. (A.1)
into Eq. (2.1) gives
½C1JK1� þ ð½C1JK2� þ ½C2JK1�Þpþ ½C2JK2�p2 � qv2E ¼ 0; ðA:2Þ
where
E ¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

2
6666664

3
7777775

ðA:3Þ
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and [C1JK1] demotes a second order matrix with C1JK1 as its element in the Jth line and Kth column. For a given phase velocity
v, Eq. (A.2) provides a eigenvalue equation which determines p. For subsonic problem, p appear as five pairs of conjugates.
Therefore, Eq. (A.1) offers a class of functions that, if its parameter p properly chosen, intrinsically satisfies the equilibrium
equation. Consider a wavelike solution f(x) = exp(ikx), where k is real and positive, Eq. (A.2) can be recasted into a standard
eigenvalue problem by using the Stroh’s formalism.
Nn ¼ pn; ðA:4Þ
where
N ¼ � ðnnÞ�1ðnmÞ ðnnÞ�1

ðmnÞðnnÞ�1ðnmÞ � ðmmÞ þ qv2E ðmnÞðnnÞ�1

" #
ðA:5Þ
is a 10 * 10 matrix and the symbol (nm) denotes a 5 * 5 matrix whose components are given by
ðnmÞJK ¼ niCiJKlml: ðA:6Þ
In Eq. (A.4)
n ¼
A
L

� �
; ðA:7Þ
where L is a vector whose components are given by
LJ ¼ �niCiJKlðml þ pnlÞAK : ðA:8Þ
Eq. (A.4) determines five pairs of eigenvalues p and its corresponding eigenvector n. Note that functions with the form Eq.
(A.1) can be determined merely by substitution into Eq. (2.1), which has nothing to do with the boundary conditions. There-
fore, since the equations of equilibrium did not change in the problem of subsonic interfacial (Stoneley) wave propagating in
anisotropic multiferroic bimaterials with a viscous interface, in Eqs. (3.2a) and (3.2b) pa and AJa are obtained by the same
procedure introduced in Appendix A.

Appendix B. Surface impedance tensor

Barnett and Lothe [6,7] gives the surface impedance method for calculation on the surface wave propagation in aniso-
tropic elastic half-space. Space limitation precludes reproduction of their work, but the main procedure for solving the sur-
face impedance tensor Z will be presented in this section, along with several notes on the validity of this procedure.
Z ¼ �ðQ�1 þ iQ�1SÞ; ðB:1Þ
where
Q ¼ � 1
p

Z 1
2p

�1
2p

ssst�1d/; ðB:2Þ

S ¼ � 1
p

Z 1
2p

�1
2p

ssst�1
ssrtd/ ðB:3Þ
and the operator sabt is defined as a matrix, whose components are
sabtJK ¼ aiðCiJKl � qv2di1dl1djkÞbl: ðB:4Þ
In Eq. (B.3), (s, r) form an orthogonal pair of real unit vectors in the e1 � e2 plane such that
s ¼ �e1 sin /þ e2 cos /; r ¼ e1 cos /þ e2 sin /: ðB:5Þ
The surface impedance tensor Z can be obtained through the process Eq. (B.5) to Eq. (B.1). Several notes should be stated
about the validity of this process

1. The e1 � e2 plane is illustrated in Fig. 1, where e1 = [100]T; e2 = [010]T. Eq. (B.4) is a simplified result constructed in this
set of coordinates. For a more generalized expression please refer to Barnett and Lothe [6,7].

2. ssst]�1 in Eq. (B.2) denotes inverse matrix of ssst, and it exists as long as 0 6 v 6 v̂ , where v̂ is the so-called ‘limiting
speed’. The proof of this corollary was given in detail in Chadwick and Smith [9]. In other words, this procedure for obtain-
ing Z is valid only if 0 6 v 6 v̂ , or we can say if the wave travels under subsonic speed.

3. As long as 0 6 v 6 v̂ ;Z is hermitian because Q is symmetric and Q�1S is antisymmetric.
4. Any conclusion in Barnett and Lothe [6,7] or Chadwick and Smith [9] based on the condition that ssst is positive definite is

no longer valid for multiferroic materials with an extended elastic tensor CiJKl.
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